深入理解数据结构第五弹——排序(2)——快速排序

排序(1):深入了解数据结构第四弹——排序(1)——插入排序和希尔排序-CSDN博客

前言:

在前面我们已经讲过了几种排序方式,他们的效率有快有慢,今天我们来学习一种非常高效的排序方式——快速排序

目录

一、快速排序的思想

二、快速排序的递归实现

2.1 霍尔法

2.2 挖坑法

2.3 前后指针法

三、快排的非递归实现

四、完整代码示例

五、总结


一、快速排序的思想

快速排序是一种常用的排序算法,属于比较排序的一种。它的基本思想是先选取一个基准数据,经过一趟排序,让比它小的分为一部分,比它大的分为另一部分,然后再对这两部分继续这种操作,直到他们有序

快速排序的具体步骤如下:

  1. 选择一个基准元素(通常是待排序数组的第一个元素、最后一个元素或者中间元素)。
  2. 将比基准元素小的元素放在基准元素的左边,比基准元素大的元素放在基准元素的右边,这一步称为分区操作。
  3. 对基准元素左右两部分分别递归地进行快速排序。

比如这样一组数据{ 4,7,1,9,3,6,5,8,3,2,0 }

1、首先我们先选择一个基准元素(我们以最左边的元素为基准元素为例)

2、对剩下的元素进行排序,比基准元素小的排在左边,比基准元素大的排在右边

3、对小的部分和大的部分重复上面两部操作,最后我们就可以得到一个有序的数组

这一步就可以清楚的看到其实快排的这种思想很像二叉树,所以很容易通过类似二叉树递归的那种思想来解决

二、快速排序的递归实现
 

快排的实现其实是很有意思的,在上面我们已经讲了快排的思想,其实就是不断的重复分区操作的过程,所以我们就可以设计一个递归来实现这种,同时,由于每一步都要进行分区,所以我们可以封装一个分区排序函数(PartSort函数)在前,重复这个过程

void QuickSort(int* a, int begin,int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort3(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

其中参数a是数组指针,begin是传入数组的首元素位置,end是传入元素尾元素位置,过程图如下:

快排函数的主体就是上面那几步,接下来,我们重点讲解一下快排分区排序函数(PartSort函数)该如何实现,这一步也是非常有趣的,目前我们有三种方法来实现这个函数的功能:

      1、霍尔排序

      2、挖坑法

      3、前后指针法

2.1 霍尔法

霍尔法是霍尔大佬(就是快排的发明者)自己刚开始用的排序方法,但是由于这种分部排序方法需要注意到的点太多,所以后来才又有了后面两种排序方法,现在我们先来学习一下霍尔大佬的这种方法

霍尔排序其实就是严格按照我们上面讲的快排的那种思想进行的,就是先选一个基准数,然后对后面数进行大致的判断,让比基准数小的位于基准数左侧,比基准数大的位于基准数右侧

霍尔实现这个过程的方法就是先选取最左边的元素作为基准元素,然后记录剩下元素左右位置,然后让左边向右移动,当遇到一个比基准元素大的数就停下来,右边向左移动,遇到一个小于基准元素的数停下来,然后让左右这两个数交换

然后再讲左右两部分分开再进行类似的操作

由图可见这是一种类似二叉树的操作,所以非常适合用递归来解决,具体代码如下:

int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	if (a[left] > a[mid])
	{
		if (a[right] > a[left])
			return left;
		else if (a[right] < a[mid])
			return mid;
		else
			return right;
	}
	else
	{
		if (a[right] < a[left])
			return left;
		else if (a[right] > a[mid])
			return mid;
		else
			return right;
	}
}
//1、hero 霍尔排序
//[left,right]
int PartSort(int* a, int left, int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[left], &a[keyi]);
	return left;
}

但前面我们也已经提到过了,霍尔排序有一些细节是一定要处理到位的,就比如

1、如果取左边数为基准元素,右边就要先开始移动(right - -),反之就左边先开始移动,否则就容易可能会出现溢出的现象

2、要注意当左右移动到的那个元素等于基准元素时是要跳过的,同时最后left==right时要将这个元素与基准元素交换

3、如果对于一个较为有序的函数,比如{1,2,4,5,7,3,9,8},快排的效率其实是偏低的,因为我们刚开始选的基准元素基本没啥作用,所以我们选择的基准元素要尽可能贴近中间值,所以就有了上述代码中的GetMid函数
 

2.2 挖坑法

鉴于霍尔法注意事项太多,且霍尔法较难理解,后面又有大佬总结出挖坑法这一思路相同,但更形象更容易理解的方法

挖坑法的思路如下:

先以左边元素为基准元素,然后将这个元素挖出,将这个位置理想化成一个坑,然后再从右边向左边移动,找到一个小于基准数的数后将它放入坑中,将这个位置作为新的坑,再从左边往右边去,找到一个大于基准数字的数,填入坑中,将这个位置作为新坑,直到最后将基准数字放入最后的坑中

挖坑法的思路要比霍尔法,简单很多,实现如下:

//2、挖坑法
int PartSort2(int* a,int left,int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		while (left<right && a[left]<=key)
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = key;
	return left;
}

2.3 前后指针法

前后指针法是一个更容易理解的很不错的方法,体现了后人的智慧

前后指针法的思路如下:

首先先将最左边元素作为基准元素,然后定义一个prev表示后指针,定义一个cur表示前指针,cur=prev+1,然后让前指针先走,当遇到一个小于基准元素的数时停下来,然后让后指针走一步,然后交换这两个数据,直到前指针把所有数据走完

实现上述过程的代码:

//3、前后指针法
int PartSort3(int* a, int left, int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int prev = left;
	int cur = prev + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	return prev;
}

三、快排的非递归实现

这个由于篇幅问题,留在下一章进行讲解(其实是本人累了.......坐在这写一下午了,呜呜呜呜呜........),这个明天写,嘿嘿

四、完整代码示例

上面我们就已经把快排的几种分部处理的方法和思想讲的很清楚了,接下来,我们就通过一个完整的代码实例来感受快排的魅力所在

对数组{ 4,7,1,9,3,6,5,8,3,2,0 }进行快排

Seqlish.h

//快速排序
void QuickSort(int* a, int begin, int end);

Seqlish.c

//快速排序
void PrintArray(int* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}
void Swap(int* e1, int* e2)
{
	int tmp = *e1;
	*e1 = *e2;
	*e2 = tmp;
}
int GetMid(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	if (a[left] > a[mid])
	{
		if (a[right] > a[left])
			return left;
		else if (a[right] < a[mid])
			return mid;
		else
			return right;
	}
	else
	{
		if (a[right] < a[left])
			return left;
		else if (a[right] > a[mid])
			return mid;
		else
			return right;
	}
}
//1、hero 霍尔排序
//[left,right]
int PartSort(int* a, int left, int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		Swap(&a[left], &a[right]);
	}
	Swap(&a[left], &a[keyi]);
	return left;
}
//2、挖坑法
int PartSort2(int* a,int left,int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[hole] = a[right];
		hole = right;
		while (left<right && a[left]<=key)
		{
			left++;
		}
		a[hole] = a[left];
		hole = left;
	}
	a[hole] = key;
	return left;
}
//3、前后指针法
int PartSort3(int* a, int left, int right)
{
	int mid = GetMid(a, left, right);
	Swap(&a[mid], &a[left]);
	int prev = left;
	int cur = prev + 1;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi])
		{
			prev++;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	return prev;
}
//递归的快速排序
void QuickSort(int* a, int begin,int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort3(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

test.c

//测试快速排序
void TestQuick()
{
	int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	PrintArray(a, sizeof(a) / sizeof(a[0]));
	//QuickSort(a, 0, sizeof(a) / sizeof(a[0]) - 1);      //递归快排
	QuickSortNonR(a, 0, sizeof(a) / sizeof(a[0]) - 1);    //非递归快排

	PrintArray(a, sizeof(a) / sizeof(a[0]));
}

int main()
{
	TestQuick();
	return 0;
}

运行结果如下:

五、总结

总之,快排的思路是有点类似二叉树的,所以适合用递归来解决,当然,用非递归同样能处理,这里我们留下了一个尾巴,等下次解决,上面提到的这些内容,如果有不理解的地方欢迎私信与我交流或者在评论区中指出

谢谢各位大佬观看,创作不易,还请各位大佬点赞支持一下!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/559258.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【windows-搭建Ubuntu22LTS】

一、环境要求 1. windows版本要求 至少Windows 10 2020年5月(2004) 版, Windows 10 2019年5月(1903) 版&#xff0c;或者 Windows 10 2019年11月(1909) 版 2. 控制面板开启相关的程序(需要重启) 二、Microsoft store安装unbuntu 下载后直接运行&#xff08;稍微等会&#…

Linux软件安装和部署Java代码

文章目录 1.软件安装1.1.软件安装方式1.2.常用软件安装1.2.1 安装jdk1.2.2 安装Tomcat1.2.3 安装MySQL1.2.4 安装lrzsz 2.项目部署2.1.手工部署项目2.2 通过Shell脚本自动部署项目 1.软件安装 1.1.软件安装方式 &#xff08;1&#xff09;二进制发布包安装&#xff1a; 软件已…

基于SSM的学校在线考试系统的设计与实现

功能需求 管理员模块 管理员模块是整个学校在线考试系统中最为重要的管理者&#xff0c;能够对网站内的各种信息进行管理&#xff0c;能够对教师、学生的个人资料进行管理&#xff0c;对于已经离校的学生将其剔除考试名单&#xff0c;将新入校的学生纳入到考试名单中。对于入…

用 element ui 实现季度选择器

由于在数据项目中经常以各种时间条件查询数据&#xff0c;所以时间选择器&#xff08;DatePicker&#xff09;组件是很常用的组件。但是在我使用的 Element UI 中&#xff0c;缺少了季度选择器的功能。 简易实现 一开始我根据时间范围使用 select 去遍历,如 2024-Q1、2023-Q4…

win/mac达芬奇19下载:DaVinci Resolve Studio 19

DaVinci Resolve Studio 19 是一款功能强大的视频编辑和调色软件&#xff0c;广泛应用于电影、电视和网络节目的后期制作。这款软件不仅提供了专业的剪辑、调色和音频处理工具&#xff0c;还引入了全新的DaVinci Neural Engine AI工具&#xff0c;对100多项功能进行了大规模升级…

美化博客文章(持续更新)

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;游戏实现&#xff1a;贪吃蛇​​​​​​ &#x1f337;追光的人&#xff0c;终会万丈光芒 前言&#xff1a; 该文提供我的一些文章设计的一些方法 目录 1.应用超链接 1.应用超链接

差速机器人模型LQR 控制仿真——路径模拟

LQR路径跟踪要求路径中带角度&#xff0c;即坐标&#xff08;x,y,yaw&#xff09;&#xff0c;而一般我们的规划出来的路径不带角度。这里通过总结相关方法&#xff0c;并提供一个案例。 将点路径拟合成一条完整的线路径算法 将点路径拟合成一条完整的线路径是一个常见的问题…

【Java开发指南 | 第十五篇】Java Character 类、String 类

读者可订阅专栏&#xff1a;Java开发指南 |【CSDN秋说】 文章目录 Java Character 类转义序列 Java String 类连接字符串 Java Character 类 Character 类是 Java 中用来表示字符的包装类&#xff0c;它提供了一系列静态方法用于对字符进行操作&#xff0c;其主要分为静态方法…

06 JavaScript学习:语句

JavaScript 语句是用来执行特定任务或操作的一组指令。它可以包括变量声明、条件语句、循环语句、函数调用等。JavaScript 语句以分号结尾&#xff0c;每个语句都会被解释器执行。 分号 ; 在JavaScript中&#xff0c;分号&#xff08;;&#xff09;用于表示语句的结束。尽管在…

python爬虫-----深入了解 requests 库(第二十五天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…

【汇编语言】初识汇编

【汇编语言】初识汇编 文章目录 【汇编语言】初识汇编前言由机器语言到汇编语言机器语言与机器指令汇编语言与汇编指令汇编语言程序示例 计算机组成指令和数据的表示计算机的存储单元计算机的总线 内存读写与地址空间CPU对存储器的读写内存地址空间 总结 前言 为什么要学习汇编…

Numpy重修系列(一) --- 初识Numpy

一、为什么使用Numpy&#xff1f; 1.1、简介 Python科学计算基础包&#xff0c;提供 多维数组对象 、派生对象&#xff08;掩码数组、矩阵&#xff09; 数组的快速操作&#xff08;数学计算、逻辑、形状变化、排序、选择、输入输出、离散傅里叶变换、基本线性代数、基本统计运…

数据分析案例-中国黄金股票市场的EDA与价格预测

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

【数据结构】单链表经典算法题的巧妙解题思路

目录 题目 1.移除链表元素 2.反转链表 3.链表的中间节点 4.合并两个有序链表 5.环形链表的约瑟夫问题 解析 题目1&#xff1a;创建新链表 题目2&#xff1a;巧用三个指针 题目3&#xff1a;快慢指针 题目4&#xff1a;哨兵位节点 题目5&#xff1a;环形链表 介绍完了…

Activity——spring方式创建activiti所需数据表结构

文章目录 前言依赖引入编写数据库连接等配置配置日志文件编写java代码生成数据库表结构问题反馈与解决思路问题一&#xff1a;Cause: java.sql.SQLSyntaxErrorException: Table activiti_02.act_ge_property doesnt exist 为什么文件名必须写死&#xff1f; 前言 在之前创建ac…

循序渐进丨使用 Python 向 MogDB 数据库批量操作数据的方法

当我们有时候需要向数据库里批量插入数据&#xff0c;或者批量导出数据时&#xff0c;除了使用传统的gsql copy命令&#xff0c;也可以通过Python的驱动psycopg2进行批量操作。本文介绍了使用psycopg2里的executemany、copy_from、copy_to、copy_expert等方式来批量操作 MogDB …

js-pytorch:开启前端+AI新世界

嗨&#xff0c; 大家好&#xff0c; 我是 徐小夕。最近在 github 上发现一款非常有意思的框架—— js-pytorch。它可以让前端轻松使用 javascript 来运行深度学习框架。作为一名资深前端技术玩家&#xff0c; 今天就和大家分享一下这款框架。 往期精彩 Nocode/Doc&#xff0c;可…

python爬虫之爬取携程景点评价(5)

一、景点部分评价爬取 【携程攻略】携程旅游攻略,自助游,自驾游,出游,自由行攻略指南 (ctrip.com) import requests from bs4 import BeautifulSoupif __name__ __main__:url https://m.ctrip.com/webapp/you/commentWeb/commentList?seo0&businessId22176&busines…

“中医显示器”是人体健康监测器

随着科技的进步&#xff0c;现代医学设备已经深入到了人们的日常生活中。然而&#xff0c;在这个过程中&#xff0c;我们不应忘记我们的医学根源&#xff0c;中医。我们将中医的望、闻、问、切四诊与现代科技相结合&#xff0c;通过一系列的传感器和算法将人体的生理状态以数字…

3、MYSQL-一条sql如何在MYSQL中执行的

MySQL的内部组件结构 大体来说&#xff0c;MySQL 可以分为 Server 层和存储引擎层两部分。 Server层 主要包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函…
最新文章